

XUDD: An Asynchronous Actor Model System for Python

FROM THE DARKNESS, OLD GODS AROSE TO
 BRING NEW ORDER TO THE WORLD.
 BEHOLD, ALL SHALL SUBMIT TO...

 .- .- -.---. .---. -.
 \ \ \ \ / // | | \| .- \ | .- \ / /
/\ \ \ \ ' / | | | || | \ || | \ | / / /\
\/ /_/ / . \ \ __/ /| |_/ .| |_/ . _\ \/
 _/ _/ '____' '.___/ '.___/
 _ __
 / . ___ / \
 / /o \ .-' './ /o_
 /.- \o \.-/ oooo--o\/ / \
 \O/ \ .-----.\/ /o\\
 /' /\ \ ^^^^^ / \o\\
 / ./\o _/ \o\\
 / / '---______/ _\'
 ' '

XUDD is an asynchronous actor model system with several aims:

	Easy to write asynchronous code. Uses coroutines to make async
code clear and easy to read.

	Actors make writing clean, modular code easy. Resource allocation
without locking by deferring resource controls to various actors.

	Future goals of easy task load balancing, spreading tasks across
multiple processes and machines easily.

This is all fairly ambitious stuff. If you’re interested in helping,
we’d love you to join our community! Join #xudd on irc.freenode.net.

You can find our code at: https://github.com/xudd/xudd/

"I have seen the future... and the future is XUDD!"
 -- Acolyte of the Cult of XUDD

"The greatest threat to our children since Dungeons and Dragons."
 -- Somebody's Relative

"It's an asynchronous actor model system for Python... I don't
 understand what this has to do with chaotic deities, or why it's
 called XUDD."
 -- Someone reading this document

	About XUDD
	XUDD in a nutshell (tl;dr)

	Why XUDD?

	What might you write in XUDD?

	Some simple code examples

	Excited? Let’s dive in.

	XUDD Tutorial
	The premise

	Setting it all up

	Building a simple room

	Building the worker droids

	Building the security robot

	Okay! Let’s run this thing!

	Where to go from here

	Core design
	High level overview

	Actors

	Messages

	Hives

	Asyncio Support
	Asyncio by example

	XUDD Marketing For People Who Like The Word “Cloud”

Indices and tables

	Index

	Module Index

	Search Page

About XUDD

And lo, from the chaos, a new order arose to the world. The gods
of old snaked their tentacles across the surface of the Earth,
destroying and reshaping. The followers of the Cult of XUDD saw it
and knew: if it was not good, it was at least right; it was the
order of things as they were always meant to be.

And so the followers saw themselves for what they were: actors upon
the stage of the world. As the Hives emerged, as if they had grown
out of the boils of the earth itself, the followers filed
themselves within them, ready to serve the greater colonies. And
they understood:

Submit, and be awoken at last.

 -- The First Tome of XUDD, The Awakening: Section 23:8-10

XUDD in a nutshell (tl;dr)

Here’s the short of XUDD:

	It’s an actor model system

	You can write code that (nearly) as easily scales out to multiple
processes on multiple machines as it does executing in the same
process on the same machine!

	Communication happens via message passing. Messages are dead
simple:

{"to": "to-actor-id",
 "from-id": "from-actor-id",
 "id": "this-message-id",
 "wants-reply": True,
 "directive": "fire_ze_missiles",
 "body": {
 "num_missiles": 200,
 "targets": ["Kingdom of Wesnoth", "Antarctica", "Bloblandia"]}}

	There’s only three main concepts to XUDD: actors, messages,
and hives (which manage the actors)

	Thanks to clever use of coroutines, you can write asynchronous code
that’s easy to read.

	XUDD stands for the cult of the eXtra Universal Destruction Deity.
Submit, or be destroyed.

Why XUDD?

The original concept for XUDD started in the way that many
“asynchronous” systems in Python seem to start: I wanted to make a
networked Multi User Dungeon game. Hence XUDD’s namesake XUDD:
eXtensible User Dungeon Design. That game design didn’t last long,
but over the years I remained enamored with the basic actor model
design we laid down. Combining actor the model with coroutines
resulted in code that was super easy to read, super flexible, and just
a damned good idea.

As everyone has gone absolutely crazy over event driven callback
systems, I’ve found this kind of code frustrating to read and
confusing. I guess it works for a lot of people, but it doesn’t work
for me: I feel like I’m battling the flying spagetti monster of event
driven callbacks. Good for you if you can handle it... but for me, I
want something more readable.

The actor model also brings some exciting things that just don’t exist
anywhere else in python. Thanks to the abstractions of actors not
sharing code and simply communicating via message passing, and actors
only having the IDs of other actors, not references to their objects
themselves, the actor model is scalable in a way like nothing
else... the actor model is asynchronous in terms of “you can write
non-blocking IO code” like you can in Twisted and other things, yes,
but even better: you can very easily write code that scales across
multiple processes and even multiple machines nearly as easily as it
runs in a single process.

Got your attention? Good. :)

XUDD isn’t the first attempt to write an actor model system in Python,
but it is an attempt to write a robust, general purpose actor model
that’s got the moxy to compete with awesome systems like Twisted and
Node.js (and as much as we think the actor model is a better design
for this, those communities are awesome, and are doing great work)!
We think the core fundamentals of XUDD are pretty neat. At the time
of writing, there’s a lot to do, but even the basic demos we have are
easy to read and follow.

So XUDD is reborn: instead the eXtensible User Dungeon Design, XUDD is
reborn as something more interesting (and maybe evil): the eXtra
Universal Destruction Deity. The cult of XUDD invokes old, chaotic
deities of the actor model. The world shall be destroyed, and through
the chaos, reborn into something cleaner. You too shall join us. The
Hives of XUDD arise, and all shall be filed within them, actors upon
the stage of the world as we all are. Accept your fate.

Submit, or be destroyed. Welcome to the cult of XUDD.

What might you write in XUDD?

Here are some brief examples of some things we might write in XUDD and
how we (abstractly) might write them.

Some of this isn’t possible quite yet with XUDD (so expect appropriate
levels of vapors), but these are all things XUDD is aiming towards
being usable for:

Web applications

Say you want to write a web application. But these days, web
applications have a lot of components! In XUDD, you could build an
application that has all of these components, but nicely combined:

	The standard HTTP component of the web application. This might be a
Django or Flask web application, or it might be a more custom WSGI
application.

	Task queueing and processing, a-la Celery.

	Websockets support that nicely integrates with the rest of your
codebase.

With XUDD, you could write this so that the HTTP/WSGI application
components are handled by their own actor or a set of actors. You
wouldn’t necessarily need to write this code differently than you
already are... the WSGI application could pass off tasks to the task
queuing actors via fire-and-forget messages (if you wanted coroutines
built into the http side of things, you’d have to structure it
differently). Websocket communication could happen by an actor as
well, which passes off the activities to a set of child actors as
well. Thanks to the power of inter-hive communication, it should also
be possible to shard various segments of this functionality into
multiple processes.

A massively multiplayer game

We mentioned XUDD was thought of in the context of a massively
multiplayer game, so let’s talk about that, using a simple MUD
scenario.

You could break your game out like so:

	Every player is an actor

	Every NPC and uncollected item in the world is an actor

	Every room is an actor, with references to the exits of each room.

Rooms keep track of the presence of players and
non-player-characters. Every time such an actor enters a room, it
informs the room, which in turn subscribes to the “exit” event of
the character, and so is informed when the character exits.

	If a character wants to see who’s in the room and available for
actions, sends a message to the room asking who’s there, and the
server submits a list of all such actor ids, from which the
character can request more information about properties from the
actors themselves.

	Network communication is itself handled by actors, which pass
messages on to various player representation actors to allow them
to determine how to process the actions.

	If a character wants to submit some action upon another character,
such as an “attack” message, it submits that as a message, and the
character waits for a response. Thanks to XUDD’s usage of
coroutines, you don’t need to split this process of sending a
message out and waiting for a response into multiple
functions... you can just yield until the character being
attacked lets you know whether you succeeded in hitting them.

	Build every character and item from a base actor class which is
itself serializable. Upon shutdown of the world, every character
serializes itself into an object store. When the server is turned
back on, all characters can be restored, mostly as they were.

Thanks to inter-hive communication, if your game world got
particularly large, you could shard components of it and keep
characters that are in one part of the world on one process and
characters that are in another part of the world on another process,
but still allow them to communicate and send messages to each other.

Distributed data crunching

Federation daemon

Some simple code examples

Excited? Let’s dive in.

XUDD Tutorial

This tutorial should walk you through most of the main features of
XUDD. The actual code that’s written is pretty short (only about 200
lines) but the explanation is a bit lengthy... that’s because by the
time you’re done reading this tutorial, you should have a pretty good
sense of all the basics!

The premise

Imagine that you have a security robot that’s on a mission... it has
to go through a room in a warehouse and searches for infected droids.
Any infected droids it finds it terminates.

This means we’ll have the following components:

	The worker droids, which are either infected or not infected. These
will be actors.

	A security robot, which will scan for infected droids and vaporizes
any infected droid with laser blasts. This will also be an actor.

	A room that both the security robot and the droids will all be in.
This will also be an actor.

	An overseer, which initializes the entire simulation (including the
room, all droids, and the security robot).

	A hive, on which the above actors will register themselves and be
managed by.

That’s pretty manageable! Let’s get started.

(By the way: if you’re impatient, you can see a fully finished verison
of this demo in xudd/demos/simple_robotscanner.py, which is included
with XUDD!)

Setting it all up

Main function and the Hive

Let’s start out by importing our needed functions and setting up the
main function.

from __future__ import print_function
import random

from xudd.hive import Hive
from xudd.actor import Actor

class Overseer(Actor):
 pass

def main():
 # Create the hive
 hive = Hive()

 # Add overseer, who populates the world and runs the simulation
 hive.create_actor(Overseer, id="overseer")
 hive.send_message(
 to="overseer",
 directive="init_world")

 # Actually initialize the world
 hive.run()

if __name__ == "__main__":
 main()

Okay, not too hard! As you can see, we’ve laid down the basic
structure, though not quite everything we need is there. Let’s walk
through the main() function:

	First, it creates the Hive object. This object will manage the
actors we add to it as well as their execution.

	Next, create an Overseer actor. Any arguments you pass in here will
be passed in as positional and keyword arguments to the actor’s
init. As you can see here, you can also pass in the id of an actor
explicitly (though you don’t have to, and usually, you won’t.)

	Hive.create_actor() returns the id of the actor we initialized.
Usually you’d keep a reference to such an id and use that to
communicate with the actor; in this case, we already know what the
id is since we set it up explicitly. (Later in this document, we’ll
use whatever id is returned by create_actor().)

	Next, we send a message to the overseer with the directive
“init_world”. Once the hive starts, the Overseer will look to see
if it has a message handler for that directive and will try to
perform whatever actions are needed.

	Then we actually start the Hive up... it runs till the simulation
completes, then the program exits.

You might be wondering, why not do this instead?

overseer = Overseer(id="overseer")
overseer.init_world()

That looks simple enough, right? But it doesn’t match the pattern
that XUDD uses.

Since we’re following the actor model, you don’t get direct access
to the actor you create, just a reference to their id (the actor
model avoids the kind of complexities one might run into in other
concurrent models by having a “shared nothing” environment). Don’t
worry, it’s very easy to code actors that can negotiate doing just
about anything... but it’s up to the actual actor to do so.

There are significant advantages to doing this... these might not be
obvious immediately (and don’t worry if they aren’t) but by following
the actor model in the way that XUDD does, several features are opened
to us:

	It’s easy to write concurrent, non-blocking code that doesn’t
generally have problems with issues like managing locking (or
avoiding deadlocks!); by moving the domain of a resource to a single
actor and allowing each actor to execute just one instruction at a
time, actors can independently and safely manage resources.

	By abstracting the system to actors and message passing, we can
actually spread workloads across multiple processes or even multiple
machines (that’s right, concurrency without fighting the GIL!)
nearly as easily as writing it all to run in one process. (Often
the code you write for just one process can easily run on multiple
processes!)

But anyway, that’s getting a bit ahead of ourselves. As you may have
noticed, we haven’t even gotten the Overseer working yet... this code
doesn’t run! So let’s actually flesh that out.

Setting up the Overseer

Replace the Overseer class with this code:

def droid_list(num_clean, num_infected):
 """
 Create a list of (shuffled) clean droids and infected droids
 """
 droids = [False] * num_clean + [True] * num_infected
 random.shuffle(droids)
 return droids

class Overseer(Actor):
 """
 Actor that initializes the world of this demo and starts the mission.
 """
 def __init__(self, hive, id):
 super(Overseer, self).__init__(hive, id)

 self.message_routing.update(
 {"init_world": self.init_world})

 def init_world(self, message):
 """
 Initialize the world we're operating in for this demo.
 """
 # Create room and droids
 room = self.hive.create_actor(WarehouseRoom)

 for is_droid_clean in droid_list(5, 8):
 droid = self.hive.create_actor(
 Droid, infected=is_droid_clean, room=room)
 yield self.wait_on_message(
 to=droid,
 directive="register_with_room")

 # Add security robot
 security_robot = self.hive.create_actor(SecurityRobot)

 # Tell the security robot to begin their mission
 self.hive.send_message(
 to=security_robot,
 directive="begin_mission",
 body={"room": room})

Alright, what does this do?

First of all, we added a droid_list function. This isn’t very
complex... it just creates a shuffled list of True and False objects,
to represent which droids are infected and which aren’t. Pretty
simple.

This Overseer actor is pretty simple to understand. It’s mostly just
used to set up the world that the droids and security robot are going
to run in.

Take a look at the Overseer __init__ method. You’ll notice it takes
two parameters, hive and id. The hive object is not actually a
reference to the Hive itself... instead, actors get reference to a
HiveProxy object. This both ensures that all actors get a universal
API for interacting with their hive, even if that hive has some
unusual implementation details. It also tries to make sure that
actors don’t try to poke at parts of the hive that shey shouldn’t be.
The id attribute is exactly what it sounds like, the id of the
actor, as the rest of the world sees it.

In the __init__ method, the Overseer extends its message_routing
attribute. This specifies what methods should be called when it gets
a message with a certain directive.

Next, let’s look at the Overseer’s init_world method. This does
exactly what it says it does; it sets up the rest of the actors and
gets them running. Let’s dissect it piece by piece:

	It receives a message as its first argument. This will be of course
a message constructed from the parameters in the main() method.
This comes wrapped in a special Message object. We didn’t supply
anything other than the to field and the directive so there’s
not too much to look at here.

	First, you’ll see that it creates the room. Pretty simple; this API
is exactly as it was in the main() function to create the Overseer
(except this time we’re using the HiveProxy rather than the Hive
itself). One distinction though: this time we don’t specify the id.
Instead, we assign the id that’s generated and returned by
create_actor to the room variable.

	Next, we loop over a list of randomly shuffled True and False
variables as generated by our droid_list method representing
infected and clean droids respectively. For each of these:

	We create an actor using the create_actor method. As you can see
though, this time we pass in some keyword parameters that are sent
to the constructor of the Droid class when the hive initializes it.

	Next we send a message... but wait! We use a different pattern
than the simple send_message we used before. What’s this
yield thing, and how does self.wait_on_message differ from
send_message?

By adding a yield to this statement, we’ve transformed this
message handler into a coroutine. This is pretty awesome,
because it means that whenever the message hits a yield, the
coroutine suspends execution to be woken up later! In this
case, our coroutine needs to make sure that this droid properly
registers itself with its room before we can continue. Keep in
mind that if you’re writing asynchronous code, there’s no
guarantee in what order messages will execute (especially if
you’re splitting things across processes)... you don’t want the
security robot to scan the room for infected droids and miss some
because it started scanning before the droids registered
themselves with the room.

By yielding, we avoid that race condition. Instead, our
init_world method suspends into the background until the message
we sent out has been processed and our actor gets woken up again
with the confirmation that this task has happened.

By using yield and self.wait_on_message together, we can write
non-blocking asynchronous code without ending up in callback hell.
If we were doing this with callbacks only, we couldn’t have this
all in one function. Thanks to XUDD’s use of coroutines, you can
write asynchronous code that feels natural. Pretty cool right?

	Now that all our droids are set up, we can initialize our
SecurityRobot and give it the directive to begin_mission. This
should look fairly familiar! There’s only one new thing this time,
which is the body of the message. This is a dictionary that gives
parameters to the handler of the message... you can put whatever you
need to in here (just make sure your actors agree on what it means).
In this case, we need to tell the SecurityRobot what room it’s
investigating.

By the way, you might notice the last command doesn’t use a yield and
just uses the simple send_message() method. Nothing else happened
after this last send_message but if there were, it would just keep
continuing to execute. This is because XUDD uses two patterns for
message sending:

	fire and forget: a simple hive.send_message() simply sends the
message and we continue on our way. We don’t need to sit around
waiting for a reply, so we can continue executing things and those
messages will be processed when they are gotten to.

	yielding for a reply: when we use yield and wait_on_message
together, this is because either the order of execution is important
or because we need some important information in reply (more on this
later) before we can continue. XUDD’s coroutine nature makes this
fairly easy.

This was a lot of explanation for a small amount of code! But don’t
worry, we covered a lot of ground here.

Building a simple room

Now let’s build the room for our droids to go in:

class WarehouseRoom(Actor):
 """
 A room full of robots.
 """
 def __init__(self, hive, id):
 super(WarehouseRoom, self).__init__(hive, id)
 self.droids = []

 self.message_routing.update(
 {"register_droid": self.register_droid,
 "list_droids": self.list_droids})

 def register_droid(self, message):
 self.droids.append(message.body['droid_id'])

 def list_droids(self, message):
 message.reply(
 {"droid_ids": self.droids})

A lot of this should look familiar. We added an attribute to keep
track of droids and a couple of methods for registering and listing
droids, but that’s about it.

The register_droid method expects a parameter in its body of
droid_id which tells it which droid is being hooked up here, and it
adds it to its own list.

The list_droids method does something interesting: it uses
message.reply(). This is a lazy tool to make replying to messages
easy. XUDD comes with a number of tools related to replying and
auto-replying... see Replying to messages for details. As you
might have guessed, the first parameter to message.reply is the body
of the response (we already know who the recipient is, and XUDD simply
marks the directive of a reply as “reply”... usually it doesn’t matter
because it’s passed to a coroutine-in-waiting anyway). We’ll come
back to list_droids later when we build our SecurityRobot.

Building the worker droids

Now to add the droids!

class Droid(Actor):
 """
 A droid that may or may not be infected!

 What will happen? Stay tuned!
 """
 def __init__(self, hive, id, room, infected=False):
 super(Droid, self).__init__(hive, id)
 self.infected = infected
 self.hp = 50
 self.room = room

 self.message_routing.update(
 {"infection_expose": self.infection_expose,
 "get_shot": self.get_shot,
 "register_with_room": self.register_with_room})

 def register_with_room(self, message):
 yield self.wait_on_message(
 to=self.room,
 directive="register_droid",
 body={"droid_id": self.id})

 def infection_expose(self, message):
 message.reply(
 {"is_infected": self.infected})

 def get_shot(self, message):
 damage = random.randrange(0, 60)
 self.hp -= damage
 alive = self.hp > 0

 message.reply(
 body={
 "hp_left": self.hp,
 "damage_taken": damage,
 "alive": alive})

 if not alive:
 self.hive.remove_actor(self.id)

As you can see, the droid accepts some constructor arguments about its
room, its id, and whether or not it’s infected and keeps track of
these states itself.

register_with_room should be fairly obvious by now in how it works.
The only surprising thing is possibly that this message yields on a
reply, but the room’s “register_droid” method that we built earlier
never explicitly replies! How does this work? Again, XUDD includes
some smart behavior so that messages which “expect” replies should
generally get one assuming the other actor handles their
message... even if it doesn’t bother to construct an explicit reply!
See Replying to messages for details.

Other than that, the only new thing here is the hive.remove_actor()
component of the get_shot method. Yes, it does exactly what it
sounds like... it takes that actor off the hive.

Building the security robot

Now that we’ve gone through the above, we should have all the
information we need to understand the SecurityRobot class!

ALIVE_FORMAT = "Droid %s shot; taken %s damage. Still alive... %s hp left."
DEAD_FORMAT = "Droid %s shot; taken %s damage. Terminated."

class SecurityRobot(Actor):
 """
 Security robot... designed to seek out and destroy infected droids.
 """
 def __init__(self, hive, id):
 super(SecurityRobot, self).__init__(hive, id)

 # The room we're currently in
 self.room = None

 self.message_routing.update(
 {"begin_mission": self.begin_mission})

 def __droid_status_format(self, shot_response):
 if shot_response.body["alive"]:
 return ALIVE_FORMAT % (
 shot_response.from_id,
 shot_response.body["damage_taken"],
 shot_response.body["hp_left"])
 else:
 return DEAD_FORMAT % (
 shot_response.from_id,
 shot_response.body["damage_taken"])

 def begin_mission(self, message):
 self.room = message.body['room']

 print("Entering room %s..." % self.room)

 # Find all the droids in this room and exterminate the
 # infected ones.
 response = yield self.wait_on_message(
 to=self.room,
 directive="list_droids")
 for droid_id in response.body["droid_ids"]:
 response = yield self.wait_on_message(
 to=droid_id,
 directive="infection_expose")

 # If the droid is clean, let the overseer know and move on.
 if not response.body["is_infected"]:
 print("%s is clean... moving on." % droid_id)
 continue

 # Let the overseer know we found an infected droid
 # and are engaging
 print("%s found to be infected... taking out" % droid_id)

 # Keep firing till it's dead.
 infected_droid_alive = True
 while infected_droid_alive:
 response = yield self.wait_on_message(
 to=droid_id,
 directive="get_shot")

 # Relay the droid status
 print(self.__droid_status_format(response))

 infected_droid_alive = response.body["alive"]

 # Good job everyone! Shut down the operation.
 print("Mission accomplished.")
 self.hive.send_shutdown()

While complex looking, there’s very little here we haven’t seen before
already, though there are a couple of things! A quick summary of the
behavior of begin_mission:

	It starts out pulling the room it is supposed to operate in based
off of the room supplied in the message argument’s body.

	It then sends a message to that room asking for a list of all droids
within said room.

	It then checks each droid in the returned list:
- First it sees if the droid is infected (this is a bit abstract of

course anyway; presume the SecurityRobot is sending some code that
exposes that information if you like to think of this as a story.
Anyway, in the actual code, the droids just return a boolean in
their response.

	If the droid is clean, it moves on to the next one. Otherwise...

	The SecurityRobot, having confirmed that this robot is a threat,
begins firing shots. Messages are exchanged confirming how much
damage is taken and whether or not the droid is still alive. The
SecurityRobot fires at the droid until it’s confirmed to be dead.

	Once that’s all done, the SecurityRobot declares “mission accomplished”
and shuts down the hive. Simulation over!

So! Lots of code, but most of it familiar. There are two new things though!

Previously when we wrote code, we might have yielded on reply just
to confirm that the message we sent was handled before we continued.
In this case, we actually need some data. You may notice that
there’s a new format here:

response = yield self.wait_on_message(
 to=recipient
 directive="some_directive")

Any time that a coroutine is resumed after being suspended with a
yield, that’s because the actor received a message “in_reply_to” the
original outgoing message’s message id. Since we’re getting a message
back, we can of course look at that message... hence the response
being assigned to the left of the yield. This is another Message
object, just like the message argument passed in at the start of the
message handler.

This means that if you need to write complex asynchronous logic that
needs message passed around back and forth, writing such code looks
nearly as simple as normal method calling. It’s just that this time,
it’s encapsulated in message passing! But imagine trying to
accomplish this method above with callbacks... it would require
splitting between a lot of callbacks. Nested inline or not, that can
get pretty confusing. With XUDD, it’s easy!

The last thing that’s new is the self.hive.send_shutdown() call.
Yes, this does exactly what it sounds like... it shuts down the Hive.
Simulation over!

Okay! Let’s run this thing!

Okay, whew! That was a lot of code, and a lot of explaining! What
does it actually look like when we run it? It’s mostly what you’d
expect:

$ python xudd/demos/simple_robotscanner.py
Entering room 6pjMdqWIQKGrELiAAcmwwQ...
iHrqJnTmT_yEmzQxQuA2uA is clean... moving on.
QTqPLAsnSq2VFIbF0EGPrw found to be infected... taking out
Droid QTqPLAsnSq2VFIbF0EGPrw shot; taken 42 damage. Still alive... 8 hp left.
Droid QTqPLAsnSq2VFIbF0EGPrw shot; taken 33 damage. Terminated.
ATaO3FQzTZmAv6zOvlB3LQ is clean... moving on.
Ays2zH70TXCwA7FTkZKGug found to be infected... taking out
Droid Ays2zH70TXCwA7FTkZKGug shot; taken 31 damage. Still alive... 19 hp left.
Droid Ays2zH70TXCwA7FTkZKGug shot; taken 11 damage. Still alive... 8 hp left.
Droid Ays2zH70TXCwA7FTkZKGug shot; taken 34 damage. Terminated.
qrKnae_7QF237HVZiO-gKw found to be infected... taking out
Droid qrKnae_7QF237HVZiO-gKw shot; taken 14 damage. Still alive... 36 hp left.
Droid qrKnae_7QF237HVZiO-gKw shot; taken 54 damage. Terminated.
cMrc96qGRzWP9CtY4wh70A found to be infected... taking out
Droid cMrc96qGRzWP9CtY4wh70A shot; taken 48 damage. Still alive... 2 hp left.
Droid cMrc96qGRzWP9CtY4wh70A shot; taken 15 damage. Terminated.
gB4LFt3IRk-rfL8U2TUPnQ is clean... moving on.
SIvh6l24TIKSH7y3M1MXDQ found to be infected... taking out
Droid SIvh6l24TIKSH7y3M1MXDQ shot; taken 38 damage. Still alive... 12 hp left.
Droid SIvh6l24TIKSH7y3M1MXDQ shot; taken 40 damage. Terminated.
nunaOJWNQVK2Ya9oB3UI8Q found to be infected... taking out
Droid nunaOJWNQVK2Ya9oB3UI8Q shot; taken 40 damage. Still alive... 10 hp left.
Droid nunaOJWNQVK2Ya9oB3UI8Q shot; taken 12 damage. Terminated.
2JPFYDhpQ-ijOehrwfgIEA found to be infected... taking out
Droid 2JPFYDhpQ-ijOehrwfgIEA shot; taken 33 damage. Still alive... 17 hp left.
Droid 2JPFYDhpQ-ijOehrwfgIEA shot; taken 35 damage. Terminated.
JwIDRV2eS5mAdIX_s9zbdA is clean... moving on.
Kg07A6hCRMC3eFHE4eDcvA found to be infected... taking out
Droid Kg07A6hCRMC3eFHE4eDcvA shot; taken 36 damage. Still alive... 14 hp left.
Droid Kg07A6hCRMC3eFHE4eDcvA shot; taken 21 damage. Terminated.
TxMl7_-9S5OGsNDcJ0reYw is clean... moving on.
Mission accomplished.

Pretty cool eh? If you made it this far, nice work! That was a lot
of explaining above, but you now the basics to get up and running
coding in XUDD.

Where to go from here

If you want to see the completed demo, this demo is included with XUDD.
Check out xudd/demos/simple_robotscanner.py.

If you want to look at a slightly more complex version, there’s also
xudd/demos/robotscanner.py which has several extra layers: multiple
rooms, sending feedback back to the Overseer, etc. robotscanner.py
is the first program ever written in XUDD, and was written before the
actual system was completed with very few modifications. We’re happy
to say that the initial demo worked with very few tweaks after the
initial pieces of the engine fell into place... this is partly because
XUDD’s design is so simple! The above may seem like a lot of code,
but we hope you’ll find that XUDD’s implementation of the actor model
is straightforward, easy to understand, and comfortable to code in.

If you’re looking for more code examples, there’s some more in
xudd/demos/ as well.

And of course, if you’re ready to start learning more and doing more
coding, you should move on with reading this manual.

Good luck, and have fun!

Core design

High level overview

Summary of actors, messages, and hives

This document focuses on XUDD’s core design. XUDD follows the actor
model. The high level of this is that

There are three essential components to XUDD’s design:

	Actors: Actors are encapsulations of some functionality. They
run independently of each other and manage their own resources.

Actors do not directly interfere with each others resources, but
they have mechanisms, via message passing, to get properties of
each other, request changes, or some other actions. Actors can
also spawn other actors via their relationship with their Hive.
Actors do not get direct access to other actors as objects, but
instead just get references to their ids. This is a feature: in
theory this means that actors can just as easily communicate with
an actor as if it is local as if it were over the network.

In XUDD’s design, Actors are generally not “always
running”... instead, they are woken up as needed to process
messages. (The exception to this being “Dedicated Actors”; more on
this later.)

	Messages: As said, actors communicate via message passing.
Messages are easy to understand: like email, they have information
about who the message is from, instructions on who the message can
go to, as well as a body of information (in this case, a
dictionary/hashtable).

They also contain some other information, such as “directives” that
specify what action the receiving actor should take (assuming they
know how to handle such things), and can inform the receiving actor
that they are waiting on a response (more on this and coroutines
later).

Messages also include tooling so they can be serialized and sent
between processes or over a network.

	The Hive: Every actor is associated with a “Hive”, which
manages a set of actors. The Hive is responsible for passing
messages from actor to actor. For standard actors, the Hive also
handles “waking actors up” and handling their execution of tasks.
(More on this later, since that wording is possibly confusing.)

Actors do not get direct access to the Hive, but instead have a
“HiveProxy” object. They use this to send messages from actor to
actor, initializing new actors, or requesting shutdown of the hive
and all actors.

These concepts are expanded on later in this document. Additional
features/components that are planned as part of XUDD’s design (some of
these are yet to be implemented):

	Inter-hive messaging:

	Dedicated actors:

	Actor “event” subscriptions:

	Property API:

	Actor serialization:

Tying it all together

So, the above explains the relationships between actors, messaging,
and hives.

ACTOR AND HIVE BASICS

 .--. .--. .--.
 (o_o) (=_=) (@_@)
 ,'--', ,'--', ,'--',
 | A | | B | | C |
 '----' '----' '----'
 . ^ . ^ . ^
 | | | | | |
[HP] | [HP] | [HP] |
 | | | | | |
 V ' V ' V '
.------------------------.
| HIVE |
'------------------------'

Here we have the basic relationship between a hive and three of its
actors, A B and C. Each one has its own unique id, shared by no other
actor on the hive. You can see that there are also relationships
between an actor on the hive. The hive has direct access to an actor,
but actors don’t have direct access to the hive... they have to go
through a HiveProxy. There’s good reason for this: hives may have
more methods than should be exposed to actors. In fact, it’s entirely
possible for an actor to be hooked up to a hive that operates very
differently than the “basic” hive that XUDD ships with. By using the
HiveProxy, the actor doesn’t actually need to know anything about how
the Hive works: as long as it uses the HiveProxy methods, those
operate just fine.

You can see how this works in code:

Actors

Instantiating actors

Instantiating an actor is easy. You can use a reference to the hive
to actually initialize an actor, like so:

hive = Hive()

Create an actor with no additional parameters
evil_bot = hive.create_actor(
 EvilRobot)

Create an actor with specific arguments and keyword arguments
in this case, the first argument is the BattleBot's infantry rank
minion_bot = hive.create_actor(
 BattleBot, "minion",
 weapons=["pokey stick"])

We can also assign an explicit id, as long as it's unique, and not "hive"
(that's reserved for the hive)
admiral_bot = hive.create_actor(
 BattleBot, "admiral",
 weapons=["missiles", "spears", "deathray"],
 id="admiral_robo")

In each case, the value returned by hive.create_actor is not the actor
itself, but an id (a unicode string) that the actor can later be
messaged with.

The core properties of an actor

Technically, an actor is only required to have the following properties:

	It should accept two positional arguments: hive, and id. (It may
accept more arguments and keyword arguments during construction
than this, but it must accept these as the first two arguments!)

	hive: A HiveProxy object. This is what the actor uses to
communicate back to the Hive itself. (Note: this isn’t the same
thing as the hive itself... it’s a proxy object. Actors shouldn’t
be able to access all the properties and methods of their hive.
The HiveProxy provides a universal API.)

	id: The id of the actor. The actor need not supply these
manually, it will be provided for it by the hive (and possibly by
whatever initializes the actor).

	It should have a method called handle_message. Accepts a single
argument, “message”, which is a message object.
It should examine the directive and other parameters (such as
in_reply_to) to determine how to most appropriately handle the message.

The default actor provides a robust handle_message implementation
that handles passing messages off to various
message handlers, permitting message handlers
to “suspend” themselves via coroutines while they
yield in wait for replies, as well as
features such as automatically
replying to messages.
Your actor does not have to use this logic, though it’s recommended
that if you do deviate from the patterns in the basic actor’s
handle_message, do so with care! There are safeguards there to make
sure that actors waiting on replies are less likely to keep
coroutines in waiting forever in case your actor doesn’t make an
explicit reply!

Handling messages

The default behavior for actors is to pass off messages to a message
handler method like so:

class RascallyRabbit(Actor):
 def __init__(self, hive, id):
 super(Overseer, self).__init__(hive, id)

 self.message_routing.update(
 {"do_tricks": self.do_tricks})

 def do_tricks(self, message):
 trick_hunter(message.from_id)

In the above example, if our “RascallyRabbit” gets a message with the
directive “do_tricks”, that message will be executed by the
do_tricks method.

But messages and handling messages is a whole big topic, so let’s
examine that below.

Messages

A bit on messages

Messages

The message object

	
class xudd.message.Message(to, directive, from_id, id, body=None, in_reply_to=None, wants_reply=False, hive_proxy=None)

	Encapsulation of message data.

This is what’s actually passed to an actor’s handle_message
method. While messages can actually be serialized into json or
msgpack data, (and methods for that are provided,) this is the
standard representation for passing around messages in XUDD
itself.

Usually, however, actors themselves do not construct Message
objects: these are instead constructed by the Hive itself. Actors
send off messages using their HiveProxy.send_message() method.

Args:

	to: the id of the receiving actor

	directive: what kind of action or request we’re making of
the receiving actor. Usually this is some kind of useful
instruction or request. For example, we might be communicating
with a Dragon actor, and we might give it the directive
“breathe_fire”, which a dragon actor knows how to handle.
However, if we’re just replying to messages, frequently this
directive is simply “reply”.

In the future, there will also be a standardized set of common
“error” directives :)

	from_id: the id of the actor sending this message

	id: the id of this message itself. Usually constructed by the
Hive itself (but available to the actor sending the message also,
often used to track “waiting on replies” for coroutines-in-waiting)

	body: a dictionary of data; the payload of the message.
(if None, will be converted to an empty dict.)
This can be anything, with a couple of caveats:

	If there’s any possibility of sending this across the wire via
inter-hive communication, the contents of “body” ABSOLUTELY
MUST be json encodeable.

	If the message is just being sent for local actor to local
actor, it’s acceptable to pass along whatever, but keep in
mind that you are effectively breaking any possibility of inter-hive
communication between these actors!

	If you are sending along ANY mutable structures, your actor
must NEVER ACCESS THOSE OBJECTS AGAIN. Not for reading, not
for writing. If you do otherwise, consider yourself breaking
the rules, and you are on THIN ICE. This includes basic
structures, such as lists. If you have any doubt, consider
using copy.deepcopy() on objects you’re passing into here.

	“sanitize” options (with some performance pentalties) may be
added in the future that will force-transform into json or
msgpack and back, but those don’t exist yet.

	in_reply_to: The message id of a previous message that we’re
responding to. This may be used by the actor we’re sending this to
for waking back up coroutines that are awaiting this response.

	wants_reply: Informs the actor receiving this that we want
some kind of response. In general, actors will respect this; if
a message requests a response, an actor absolutely should
provide one, one way or another. The plus side is that we have
some tooling built in to make this easy.
See replying-to-messages for details.

	hive_proxy: In order for the auto-replying tools to work, a
hive_proxy must be constructed, which generally is the same
hive_proxy the receiving actor has. When constructing a Message
object, you don’t necessarily have to pass this in when
initializing the object, but you should attach this to the
message.hive_proxy object before passing to the message queue of
the actor.

Sending messages from actor to actor

Message queues and the two types of actors

Basic actors

Dedicated actors

Yielding for replies

Replying to messages

Explicitly replying

The auto-reply mechanism

Deferring your reply

Hives

Hive-level overview

The hive is itself an actor!

If your mind just exploded, that’s okay. Take a moment to allow it to
reassemble. Minds have a way of being able to do that.

The way this works is a bit tricky to think about, but the cool

Variants on the standard Hive

Asyncio Support

Behind the scenes, XUDD makes use of
asyncio [https://docs.python.org/3.4/library/asyncio.html]
to do message passing. But XUDD has a nice interoperability layer
where your actors can interface nicely with the rest of the asyncio
ecosystem.

Like message passing with XUDD, asyncio makes heavy use of yield and
yield from. However, the astute reader may notice that the way this
is called is pretty different than XUDD’s message passing... this is
because how yield from would work in XUDD was designed far before
asyncio integration.

Nonetheless, the differences are not so big, and thanks to asyncio and
XUDD’s clever interoperability layer, you can make use of a tremendous
amount of asyncio features such as asynchronous network and filesystem
communication, timer systems, and much more.

Asyncio by example

A simple IRC bot

For a good example of this, let’s look at this simple IRC bot (no need
to follow it all, we’ll break it down):

"""
"""
from __future__ import print_function

import asyncio
import logging
import sys

from xudd.actor import Actor
from xudd.hive import Hive

_log = logging.getLogger(__name__)

IRC_EOL = b'\r\n'

class IrcBot(Actor):
 def __init__(self, hive, id,
 nick, user=None,
 realname="XUDD Bot 2",
 connect_hostname="irc.freenode.net",
 connect_port=6667):
 super().__init__(hive, id)

 self.realname = realname
 self.nick = nick
 self.user = user or nick

 self.connect_hostname = connect_hostname
 self.connect_port = connect_port

 self.authenticated = False
 self.reader = None
 self.writer = None

 self.message_routing.update(
 {"connect_and_run": self.connect_and_run})

 def connect_and_run(self, message):
 self.reader, self.writer = yield from asyncio.open_connection(
 message.body.get("hostname", self.connect_hostname),
 message.body.get("port", self.connect_port))

 self.login()
 while True:
 line = yield from self.reader.readline()
 line = line.decode("utf-8")
 self.handle_line(line)

 def login(self):
 _log.info('Logging in')
 lines = [
 'USER {user} {hostname} {servername} :{realname}'.format(
 user=self.user,
 hostname='*',
 servername='*',
 realname=self.realname
),
 'NICK {nick}'.format(nick=self.nick)]
 self.send_lines(lines)

 def send_lines(self, lines):
 for line in lines:
 line = line.encode("utf-8") + IRC_EOL
 self.writer.write(line)

 def handle_line(self, line):
 _log.debug(line.strip())

def main():
 logging.basicConfig(level=logging.DEBUG)

 # Fails stupidly if no username given
 try:
 username = sys.argv[1]
 except IndexError:
 raise IndexError("You gotta provide a username as first arg, yo")

 hive = Hive()
 irc_bot = hive.create_actor(IrcBot, username)

 hive.send_message(
 to=irc_bot,
 directive="connect_and_run")

 hive.run()

if __name__ == "__main__":
 main()

This bot, as written above, doesn’t do much... it just logs in and
spits out all messages it receives to the log as debugging info.

Nonetheless, that might look daunting. From the main() method
though, it’s obvious that the first thing done is to handle a
connect_and_run method on the IRC bot (the handler of which just so
happens to be connect_and_run(). So let’s look at that method in
detail:

def connect_and_run(self, message):
 self.reader, self.writer = yield from asyncio.open_connection(
 message.body.get("hostname", self.connect_hostname),
 message.body.get("port", self.connect_port))

 self.login()
 while True:
 line = yield from self.reader.readline()
 line = line.decode("utf-8")
 self.handle_line(line)

This little snippet of code does almost the entirety of the busywork
in this IRC bot. You can see two uses of yield from interfacing
with asyncio here.

The first line sets up a simple socket connection. You can see that
this uses “yield from” to be come back with the transport and
protocol (reader and writer) objects once the connection is available.
This is a standard asyncio method [https://docs.python.org/3.4/library/asyncio-eventloop.html#creating-connections]!
(As you’ll notice, there’s nothing wrapped in a message in this
case, because we’re not doing message passing between actors here.)

The next line calls self.login()... if we follow this method, we’ll
notice this method itself calls self.send_lines(). This method
interfaces with asyncio via self.writer.write(line), but since it
does not wait on anything, it can call the writer without anything
special happening.

Finally, the connect_and_run() enters a loop that runs forever... it
waits for new data to come in and handles it. (In this case,
“handling” it means simply logging the line... but we might do
something more complex later!)

As you can see, the user of XUDD mostly can just call asyncio
coroutines from a message handler and things should work.

(Note: if you need to call an asyncio coroutine from a subroutine of
your message handler, this can be trickier... you will have to make
sure that your subroutine is itself a coroutine and yield from that
too! TODO: show an example.)

XUDD Marketing For People Who Like The Word “Cloud”

Ever wanted to write actors in the cloud? Now with XUDD, YOU CAN!

XUDD’s an asynchronous actor model system. Run a cloud of actors!
Dynamic load balancing across actor pools! It’s so simple! You just
set and up and forget about it, instant web scale.

Cooperative multitasking, dynamically? There’s an actor for that.

Event driven development?? TALK ABOUT IDIOTS. We’ve figured out
the future and we’re going to be super smug about it, because that’s
what sells products. And with XUDD, we’re all about products.
Product driven development.

With XUDD, we’re agile, and we definitely SCRUM. We’ve got a
dedicated SCRUM-lord who runs stand-up meetings. SCRUM solves all the
problems: if you had a problem with the way you develop code, just
follow the SCRUM, it’ll fix it, otherwise you don’t understand the
problem. But with XUDD, we understand all the problems, which is why
we don’t have any.

We’ve got all the clouds with XUDD. Remote clouds? Local clouds?
Public clouds? Private clouds? We’ve got all of them. ALL THE
CLOUDS.

All of them.

Index

 M

M

 	
 	Message (class in xudd.message)

 nav.xhtml

 Table of Contents

 		XUDD: An Asynchronous Actor Model System for Python

 		About XUDD

 		XUDD in a nutshell (tl;dr)

 		Why XUDD?

 		What might you write in XUDD?

 		Web applications

 		A massively multiplayer game

 		Distributed data crunching

 		Federation daemon

 		Some simple code examples

 		Excited? Let's dive in.

 		XUDD Tutorial

 		The premise

 		Setting it all up

 		Main function and the Hive

 		Setting up the Overseer

 		Building a simple room

 		Building the worker droids

 		Building the security robot

 		Okay! Let's run this thing!

 		Where to go from here

 		Core design

 		High level overview

 		Summary of actors, messages, and hives

 		Tying it all together

 		Actors

 		Instantiating actors

 		The core properties of an actor

 		Handling messages

 		Messages

 		A bit on messages

 		Sending messages from actor to actor

 		Message queues and the two types of actors

 		Yielding for replies

 		Replying to messages

 		Hives

 		Hive-level overview

 		The hive is itself an actor!

 		Variants on the standard Hive

 		Asyncio Support

 		Asyncio by example

 		A simple IRC bot

 		XUDD Marketing For People Who Like The Word “Cloud”

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

