

    
      
          
            
  
XUDD: An Asynchronous Actor Model System for Python

FROM THE DARKNESS, OLD GODS AROSE TO
  BRING NEW ORDER TO THE WORLD.
  BEHOLD, ALL SHALL SUBMIT TO...

  .-   .-   -. ..  .. .---.  .---.     -.
  \ \  \ \ / // |  | \| .- \ | .- \   / /
/\ \ \  \ ' / | |  | || | \ || | \ | / / /\
\/ /_/  / . \ \ \__/ /| |_/ .| |_/ . \_\ \/
       \_/ \_/ '____' '.___/ '.___/
          _                __
        /  .        ___   /  \
       / /o \    .-'   './ /o\_
      /.- \o \.-/ oooo--o\/ /  \
           \O/  \  .-----.\/ /o\\
           /' /\ \  ^^^^^   / \o\\
          / ./\o          _/   \o\\
         / /   '---______/      \_\'
         '                        '





XUDD is an asynchronous actor model system with several aims:



	Easy to write asynchronous code.  Uses coroutines to make async
code clear and easy to read.

	Actors make writing clean, modular code easy.  Resource allocation
without locking by deferring resource controls to various actors.

	Future goals of easy task load balancing, spreading tasks across
multiple processes and machines easily.






This is all fairly ambitious stuff.  If you’re interested in helping,
we’d love you to join our community!  Join #xudd on irc.freenode.net.

You can find our code at: https://github.com/cwebber/xudd/

"I have seen the future... and the future is XUDD!"
  -- Acolyte of the Cult of XUDD

"The greatest threat to our children since Dungeons and Dragons."
  -- Somebody's Relative

"It's an asyncronous actor model system for Python... I don't
 understand what this has to do with chaotic deities, or why it's
 called XUDD."
  -- Someone reading this document







	Introduction
	Why XUDD?

	What might you write in XUDD?

	Some simple code examples

	Excited?  Let’s dive in.





	Core design
	High level overview

	Detailed design

	Variants and meta-discussion





	XUDD Marketing For People Who Like The Word “Cloud”








Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    

  

    
      
          
            
  
Introduction

And lo, from the chaos, a new order arose to the world.  The gods
of old snaked their tentacles across the surface of the Earth,
destroying and reshaping.  The followers of the Cult of XUDD saw it
and knew: if it was not good, it was at least right; it was the
order of things as they were always meant to be.

And so the followers saw themselves for what they were: actors upon
the stage of the world.  As the Hives emerged, as if they had grown
out of the boils of the earth itself, the followers filed
themselves within them, ready to serve the greater colonies.  And
they understood:

Submit, and be awoken at last.

  -- The First Tome of XUDD, The Awakening: Section 23:8-10






Why XUDD?

The original concept for XUDD started in the way that many
“asynchronous” systems in Python seem to start: I wanted to make a
networked Multi User Dungeon game.  Hence XUDD’s namesake XUDD:
eXtensible User Dungeon Design.  That game design didn’t last long,
but over the years I remained enamored with the basic actor model
design we laid down.  Combining actor the model with coroutines
resulted in code that was super easy to read, super flexible, and just
a damned good idea.

As everyone has gone absolutely crazy over event driven callback
systems, I’ve found this kind of code frustrating to read and
confusing.  I guess it works for a lot of people, but it doesn’t work
for me: I feel like I’m battling the flying spagetti monster of event
driven callbacks.  Good for you if you can handle it... but for me, I
want something more readable.

The actor model also brings some exciting things that just don’t exist
anywhere else in python.  Thanks to the abstractions of actors not
sharing code and simply communicating via message passing, and actors
only having the IDs of other actors, not references to their objects
themselves, the actor model is scalable in a way like nothing
else... the actor model is asynchronous in terms of “you can write
non-blocking IO code” like you can in Twisted and other things, yes,
but even better: you can very easily write code that scales across
multiple processes and even multiple machines nearly as easily as it
runs in a single process.

Got your attention?  Good. :)

XUDD isn’t the first attempt to write an actor model system in Python,
but it is an attempt to write a robust, general purpose actor model
that’s got the moxy to compete with awesome systems like Twisted and
Node.js (and as much as we think the actor model is a better design
for this, those communities are awesome, and are doing great work)!
We think the core fundamentals of XUDD are pretty neat.  At the time
of writing, there’s a lot to do, but even the basic demos we have are
easy to read and follow.

So XUDD is reborn: instead the eXtensible User Dungeon Design, XUDD is
reborn as something more interesting (and maybe evil): the eXtra
Universal Destruction Deity.  The cult of XUDD invokes old, chaotic
deities of the actor model.  The world shall be destroyed, and through
the chaos, reborn into something cleaner.  You too shall join us.  The
Hives of XUDD arise, and all shall be filed within them, actors upon
the stage of the world as we all are.  Accept your fate.

Submit, or be destroyed.  Welcome to the cult of XUDD.




What might you write in XUDD?

Here are some brief examples of some things we might write in XUDD and
how we (abstractly) might write them.

Some of this isn’t possible quite yet with XUDD (so expect appropriate
levels of vapors), but these are all things XUDD is aiming towards
being usable for:


Web applications

Say you want to write a web application.  But these days, web
applications have a lot of components!  In XUDD, you could build an
application that has all of these components, but nicely combined:


	The standard HTTP component of the web application.  This might be a
Django or Flask web application, or it might be a more custom WSGI
application.

	Task queueing and processing, a-la Celery.

	Websockets support that nicely integrates with the rest of your
codebase.



With XUDD, you could write this so that the HTTP/WSGI application
components are handled by their own actor or a set of actors.  You
wouldn’t necessarily need to write this code differently than you
already are... the WSGI application could pass off tasks to the task
queuing actors via fire-and-forget messages (if you wanted coroutines
built into the http side of things, you’d have to structure it
differently).  Websocket communication could happen by an actor as
well, which passes off the activities to a set of child actors as
well.  Thanks to the power of inter-hive communication, it should also
be possible to shard various segments of this functionality into
multiple processes.




A massively multiplayer game

We mentioned XUDD was thought of in the context of a massively
multiplayer game, so let’s talk about that, using a simple MUD
scenario.

You could break your game out like so:


	Every player is an actor



	Every NPC and uncollected item in the world is an actor



	Every room is an actor, with references to the exits of each room.

Rooms keep track of the presence of players and
non-player-characters.  Every time such an actor enters a room, it
informs the room, which in turn subscribes to the “exit” event of
the character, and so is informed when the character exits.



	If a character wants to see who’s in the room and available for
actions, sends a message to the room asking who’s there, and the
server submits a list of all such actor ids, from which the
character can request more information about properties from the
actors themselves.



	Network communication is itself handled by actors, which pass
messages on to various player representation actors to allow them
to determine how to process the actions.



	If a character wants to submit some action upon another character,
such as an “attack” message, it submits that as a message, and the
character waits for a response.  Thanks to XUDD’s usage of
coroutines, you don’t need to split this process of sending a
message out and waiting for a response into multiple
functions... you can just yield until the character being
attacked lets you know whether you succeded in hitting them.



	Build every character and item from a base actor class which is
itself serializable.  Upon shutdown of the world, every character
serializes itself into an object store.  When the server is turned
back on, all characters can be restored, mostly as they were.





Thanks to inter-hive communication, if your game world got
particularly large, you could shard components of it and keep
characters that are in one part of the world on one process and
characters that are in another part of the world on another process,
but still allow them to communicate and send mesages to each other.




Distributed data crunching




Federation daemon






Some simple code examples




Excited?  Let’s dive in.







          

      

      

    

  

    
      
          
            
  
Core design


High level overview

This document focuses on XUDD’s core design.  XUDD follows the actor
model.  The high level of this is that

There are three essential components to XUDD’s design:


	Actors: Actors are encapsulations of some functionality.  They
run independently of each other and manage their own resources.

Actors do not directly interfere with each others resources, but
they have mechanisms, via message passing, to get properties of
each other, request changes, or some other actions.  Actors can
also spawn other actors via their relationship with their Hive.
Actors do not get direct access to other actors as objects, but
instead just get references to their ids.  This is a feature: in
theory this means that actors can just as easily communicate with
an actor as if it is local as if it were over the network.

In XUDD’s design, Actors are generally not “always
running”... instead, they are woken up as needed to process
messages.  (The exception to this being “Dedicated Actors”; more on
this later.)



	Messages: As said, actors communicate via message passing.
Messages are easy to understand: like email, they have information
about who the message is from, instructions on who the message can
go to, as well as a body of information (in this case, a
dictionary/hashtable).

They also contain some other information, such as “directives” that
specify what action the receiving actor should take (assuming they
know how to handle such things), and can inform the receiving actor
that they are waiting on a response (more on this and coroutines
later).

Messages also include tooling so they can be serialized and sent
between processes or over a network.



	The Hive: Every actor is associated with a “Hive”, which
manages a set of actors.  The Hive is responsible for passing
messages from actor to actor.  For standard actors, the Hive also
handles “waking actors up” and handling their execution of tasks.
(More on this later, since that wording is possibly confusing.)

Actors do not get direct access to the Hive, but instead have a
“HiveProxy” object.  They use this to send messages from actor to
actor, intializing new actors, or requesting shutdown of the hive
and all actors.





These concepts are expanded on later in this document.  Additional
features/components that are planned as part of XUDD’s design (some of
these are yet to be implemented):


	Inter-hive messaging:

	Dedicated actors:

	Actor “event” subscriptions:

	Property API:

	Actor serialization:






Detailed design


Actors, hives, and other actors

So, the above explains the relationships between actors, messaging,
and hives.

ACTOR AND HIVE BASICS

  .--.     .--.     .--.
 ( o_o)   ( =_=)   (@_@ )
 ,'--',   ,'--',   ,'--',
 |  A |   |  B |   | C  |
 '----'   '----'   '----'
  .  ^     .  ^     .  ^
  |  |     |  |     |  |
[HP] |   [HP] |   [HP] |
  |  |     |  |     |  |
  V  '     V  '     V  '
.------------------------.
|         HIVE           |
'------------------------'





Here we have the basic relationship between a hive and three of its
actors, A B and C.  Each one has its own unique id, shared by no other
actor on the hive.  You can see that there are also relationships
between an actor on the hive.  The hive has direct access to an actor,
but actors don’t have direct access to the hive... they have to go
through a HiveProxy.  There’s good reason for this: hives may have
more methods than should be exposed to actors.  In fact, it’s entirely
possible for an actor to be hooked up to a hive that operates very
differently than the “basic” hive that XUDD ships with.  By using the
HiveProxy, the actor doesn’t actually need to know anything about how
the Hive works: as long as it uses the HiveProxy methods, those
operate just fine.

You can see how this works in code:




Sending messages from actor to actor


	
class xudd.message.Message(to, directive, from_id, id, body=None, in_reply_to=None, wants_reply=False, hive_proxy=None)

	Encapsulation of message data.

This is what’s actually put in an actor’s message queue.  While
messages can actually be serialized into json or msgpack data,
(and methods for that are provided,) this is the standard
representation for passing around messages in XUDD itself.

Usually, however, actors themselves do not construct Message
objects: these are instead constructed by the Hive itself.  Actors
send off messages using their HiveProxy.send_message() method.

Args:


	to: the id of the receiving actor



	directive: what kind of action or request we’re making of
the receiving actor.  Usually this is some kind of useful
instruction or request.  For example, we might be communicating
with a Dragon actor, and we might give it the directive
“breathe_fire”, which a dragon actor knows how to handle.
However, if we’re just replying to messages, frequently this
directive is simply “reply”.

In the future, there will also be a standardized set of common
“error” directives :)



	from_id: the id of the actor sending this message



	id: the id of this message itself.  Usually constructed by the
Hive itself (but available to the actor sending the message also,
often used to track “waiting on replies” for coroutines-in-waiting)



	body: a dictionary of data; the payload of the message.
(if None, will be converted to an empty dict.)
This can be anything, with a couple of caveats:


	If there’s any possibility of sending this across the wire via
inter-hive communication, the contents of “body” ABSOLUTELY
MUST be json encodeable.

	If the message is just being sent for local actor to local
actor, it’s acceptable to pass along whatever, but keep in
mind that you are effectively breaking any possibility of inter-hive
communication between these actors!

	If you are sending along ANY mutable structures, your actor
must NEVER ACCESS THOSE OBJECTS AGAIN.  Not for reading, not
for writing.  If you do otherwise, consider yourself breaking
the rules, and you are on THIN ICE.  This includes basic
structures, such as lists.  If you have any doubt, consider
using copy.deepcopy() on objects you’re passing into here.

	“sanitize” options (with some performance pentalties) may be
added in the future that will force-transform into json or
msgpack and back, but those don’t exist yet.





	in_reply_to: The message id of a previous message that we’re
responding to.  This may be used by the actor we’re sending this to
for waking back up coroutines that are awaiting this response.



	wants_reply: Informs the actor receiving this that we want
some kind of response.  In general, actors will respect this; if
a message requests a response, an actor absolutely should
provide one, one way or another.  The plus side is that we have
some tooling built in to make this easy.
See Replying to messages for details.



	hive_proxy: In order for the auto-replying tools to work, a
hive_proxy must be constructed, which generally is the same
hive_proxy the receiving actor has.  When constructing a Message
object, you don’t necessarily have to pass this in when
initializing the object, but you should attach this to the
message.hive_proxy object before passing to the message queue of
the actor.












Message queues and the two types of actors


Basic actors




Dedicated actors






Yielding for replies




Replying to messages

Hives






Variants and meta-discussion


Hives




The standard hive




Variants on the standard Hive









          

      

      

    

  

    
      
          
            
  
XUDD Marketing For People Who Like The Word “Cloud”

Ever wanted to write actors in the cloud?  Now with XUDD, YOU CAN!

XUDD’s an asychronous actor model system.  Run a cloud of actors!
Dynamic load balancing across actor pools!  It’s so simple!  You just
set and up and forget about it, instant web scale.

Cooperative multitasking, dynamically?  There’s an actor for that.

Event driven development??  TALK ABOUT IDIOTS.  We’ve figured out
the future and we’re going to be super smug about it, because that’s
what sells products.  And with XUDD, we’re all about products.
Product driven development.

With XUDD, we’re agile, and we definitely SCRUM.  We’ve got a
dedicated SCRUM-lord who runs stand-up meetings.  SCRUM solves all the
problems: if you had a problem with the way you develop code, just
follow the SCRUM, it’ll fix it, otherwise you don’t understand the
problem.  But with XUDD, we understand all the problems, which is why
we don’t have any.

We’ve got all the clouds with XUDD.  Remote clouds?  Local clouds?
Public clouds?  Private clouds?  We’ve got all of them.  ALL THE
CLOUDS.

All of them.





          

      

      

    

  

    
      
          
            

Index



 M
 


M


  	
      	Message (class in xudd.message)


  







          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		XUDD: An Asynchronous Actor Model System for Python


        		Introduction
          
          		Why XUDD?


          		What might you write in XUDD?
            
            		Web applications


            		A massively multiplayer game


            		Distributed data crunching


            		Federation daemon


            


          


          		Some simple code examples


          		Excited?  Let's dive in.


          


        


        		Core design
          
          		High level overview


          		Detailed design
            
            		Actors, hives, and other actors


            		Sending messages from actor to actor


            		Message queues and the two types of actors


            		Yielding for replies


            		Replying to messages


            


          


          		Variants and meta-discussion
            
            		Hives


            		The standard hive


            		Variants on the standard Hive


            


          


          


        


        		XUDD Marketing For People Who Like The Word “Cloud”


      


    
  

_static/comment-close.png





_static/up-pressed.png





_static/comment.png





_static/plus.png





_static/ajax-loader.gif





_static/minus.png





_static/down-pressed.png





_static/up.png





_static/comment-bright.png





_static/down.png





_static/file.png





